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Abstract 

The rapid growth of crystallographic databases has 
created a demand for novel and efficient techniques for 
the analysis of molecular conformations, in order to 
derive new concepts and rules and to generate useful 
classifications of the available data. This paper presents 
a conceptual clustering approach, termed IMEM (image 
memory), which discovers the conformational diversity 
present in a dataset of crystal structures. In contrast to 
numerical clustering methods, IMEM views a molecu- 
lar structure as comprising qualitative relationships 
among its parts, i.e. the structure is viewed as a 
molecular scene. In addition, IMEM does not require 
the user to have any a priori knowledge of an expected 
number of conformational classes within a given 
dataset. The IMEM approach is applied to several 
datasets derived from the Cambridge Structural Data- 
base and, in all cases, chemically correct and sensible 
conformational classifications were discovered. This is 
confirmed by a rigorous comparison of IMEM results 
with published conformational data obtained by energy- 
minimization and numerical clustering methods. Con- 
formational analysis tools have an important part to play 
in the conversion of raw molecular databases to 
knowledge bases. 

1. Introduction 

The rapid growth of crystallographic databases has 
created the need for computational techniques to 
structure, manage and compress the accumulated data 
and transform them into knowledge bases. These 
techniques may be used to obtain meaningful general- 
izations, deriving useful classifications and perhaps 
discovering new concepts or rules about molecular 
structures. For example, the Cambridge Structural 
Database (CSD; Allen et al., 1991) contains several 
instances of each of the 20 commonly encountered 
amino acids. From these, it is possible to derive generic 
concepts for each residue which summarize common 
features and point to differences. In this way we may 
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realize the acquisition of knowledge from data (see e.g. 
Engh & Huber, 1991; Benedetti, Morelli, Nemethy & 
Scheraga, 1983). 

At present, the crystallographic databases can gen- 
erally be described as flat files. The information is 
stored in the form of separate and unlinked entries 
(apart from implicit links contained in the bit-encoded 
screens of entries in the CSD). Clearly, the most 
appropriate way to organize and link information 
depends on the questions being asked. Thus, it is 
important to have in hand flexible classification algo- 
rithms that can help not only to analyze the data so as to 
find similarities and differences, but also to retain the 
results through the creation of structured knowledge 
bases. Finally, although several general concepts, rules 
and constraints about molecular structures have been 
explicitly formulated, many still remain buried within 
the databases. Given that the crystallographic databases 
now contain vast amounts of data (the CSD now 
contains more than 150 000 entries), there exists a clear 
and crucial need for computer-aided techniques that will 
contribute to the discovery of new knowledge. 

The demand for more convenient access to molecular 
data has led to the restructuring of flat files into 
relational (Huysmans, Richelle & Wodak, 1991) and 
object-oriented database systems. This latter approach 
has been employed by Gray, Paton, Kemp & Fothergill 
(1990) for the purpose of protein structure analysis. 
Here, Prolog queries are used to retrieve information by 
navigating through a network of objects that represent 
the primary, secondary and tertiary structure of 
proteins. A similar system, which uses an extensible 
object-oriented class library for representing, verifying 
and rendering macromolecular structures, has recently 
been developed in C +  + (Chang, Shindyalov, Pu & 
Bourne, 1994). As the quantity and range of use of 
molecular knowledge increases, there will be a growing 
need for data storage and retrieval by systems such as 
these, which rely on the organization of molecules 
according to their structural hierarchies. 

Most of the techniques used so far to acquire 
knowledge from the geometrical information stored in 
the databases have been numerical or statistical in origin 
(Taylor & Allen, 1992). Techniques more closely allied 
to artificial intelligence approaches have also been used, 
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particularly for protein structure classification and 
prediction (Blundell, Sibanda, Sternberg & Thornton, 
1987; Rooman & Wodak, 1988; Hunter & States, 
1992). Over the last few years we have been 
investigating the use of machine-learning techniques 
for application to crystallographic data, as part of a 
project in molecular scene analysis (Fortier et al., 
1993). In this paper we report on the development and 
application of IMEM, a concept formation approach 
designed specifically for objects or scenes described in 
terms of their parts and the interrelationships among 
these parts. The next section provides background 
information on machine-learning and concept-formation 
approaches and describes the theoretical foundation of 
IMEM. We then present applications of IMEM to the 
conformational classification of six- and seven-mem- 
bered rings, steroid C 17-side chains and hexopyranose 
sugars. The results obtained in these classification and 
learning exercises are compared with those generated 
by numerical clustering techniques. The paper con- 
cludes with a discussion of the potential role of 
conceptual clustering methodologies in the construction 
of crystallographic knowledge bases. 

2. Background information and methodology 

Machine learning encompasses several paradigms of 
automated learning, such as the inductive, analytic, 
connectionist and genetic approaches (Carbonell, 
1989). Although these approaches differ significantly 
in both their knowledge representation and in their 
learning engine, they all share a fundamental objective: 
to automate the acquisition of knowledge, thereby 
improving the performance of computing systems. In 
the molecular scene analysis project (Fortier et al., 
1993) we have focused on conceptual clustering and 
concept formation approaches, which belong to the 
inductive paradigm of machine learning. 

2.1. Conceptual clustering approaches 

Clustering techniques are usually divided into two 
categories: numerical and conceptual. Although the 
machine-learning branch of artificial intelligence is 
concerned mainly with the latter, numerical techniques 
will also be described briefly to highlight differences 
and similarities between the two approaches. In 
numerical clustering the samples are viewed from a 
geometrical perspective as a set of data points in an n- 
dimensional space, where n is the number of attributes 
used to characterize each data point. The goal of the 
clustering exercise is to partition the data points, 
grouping together points that are similar. Distance 
metrics are used to measure dissimilarity, while 
criterion functions help measure the quality of the data 
partition. Thus, numerical clustering techniques nor- 
mally rely exclusively on quantitative attributes. In 

Table 1. Relational attributes for molecular conforma- 
tion (a) quantitative and (b) qualitative 

The orientation relation is due to Wirth (1986); the clinal and 
periplanar relations are defined by Klyne & Prelog (1960). 

Relational attribute Arity 

(a) Quantitative 
Interatomic distance 2 
Bond angle 3 
Torsion angle 4 

(b) Qualitative 
Bonded 2 
Proximal 2 
Linear 3 
Angular 3 
syn-, antiperiplanar (sp,ap) 4 
+ , -  clinal ( + c , - c )  4 
Orientation 4 
R/S  5 
cis/trans > 5 
Axial/equatorial > 5 

structural chemistry these are typically the geometrical 
parameters that are commonly used to describe the 3D 
(three-dimensional) image of a molecule (see, for 
example, Table la). 

Conceptual clustering techniques share with their 
numerical counterparts the goal of partitioning the data 
into 'natural' groupings. They have, however, an 
additional goal, which is to characterize the clusters in 
terms of simple and meaningful concepts, rather than in 
terms of a set of statistics. These methods predomi- 
nantly use qualitative attributes. Some qualitative 
concepts that are commonly used to describe chemical 
structure, and particularly stereochemical relationships, 
appear in Table l(b). In clustering approaches the tasks 
of classification and learning do not usually rely on 
externally predefined categories or labeled examples. 
For that reason, they are termed unsupervised 
approaches. 

Both agglomerative and divisive clustering techniques 
exist. The agglomerative techniques use a bottom-up 
approach with a starting point consisting of as many 
clusters as instances. In divisive techniques a top-down 
approach is used. The starting point consists of a single 
cluster containing all instances. Clustering techniques 
may be differentiated on the basis of whether they allow 
for overlapping of clusters or whether they produce 
only disjoint partitions. A clustering technique may be 
nonincremental depending on whether all the observa- 
tions are available at the outset of a clustering exercise 
or are presented as a stream. In the latter case the 
classification evolves as each new observation is 
presented to it. Conceptual clustering techniques come 
with various combinations of the attributes mentioned 
above (incremental versus nonincremental, agglomera- 
tive versus divisive and overlapping versus disjoint). 
The term concept formation is normally used to refer to 
incremental conceptual algorithms. 
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In conceptual clustering learning proceeds through 
the generalization, characterization and organization of 
a set of observations. Concept formation approaches 
translate a stream of observations into a concept 
hierarchy that organizes and summarizes the observa- 
tions. Thus, following the definition of Gennari, 
Langley & Fisher (1989), concept formation can be 
described in terms of the following set of tasks: 

Given: a sequential presentation of objects and 
their associated description; 

find: (1) clusters that group these objects into 
classes; 

(2) a summary description (i.e. a 
concept) for each class; 

(3) a hierarchical organization for these 
concepts. 

Several useful concept formation algorithms already 
exist, for example UNIMEM (Lebowitz, 1987) and 
COBWEB (Fisher, 1987). These systems, however, rely 
on object representations expressed as a list of attribute- 
value pairs. This representation is not the most suitable 
one for structured domains where the salient features of 
an object are not only its attributes, but also the 
relationship among its parts. An emerging area of 
interest in machine learning is the design of structured 
concept formation algorithms, in which structured 
objects are formed and then organized in a knowledge 
base (Thompson & Langley, 1991). 

3. The IMEM approach 
IMEM is a concept formation method specificially 
designed for objects or scenes described in terms of 
their parts and the interrelationships among those parts 
(Conklin, 1995; Conklin & Glasgow, 1992). These 
relationships may be topological (e.g. connectivity, 
proximity, nestedness) or spatial (e.g. direction, 
relative location, symmetry). The IMEM approach has 
been implemented as a system to perform conceptual 
clustering specifically with molecular structure data. 

3.1. Knowledge representation in IMEM 

A molecular structure is represented in IMEM as an 
image, which comprises a set of parts with their 3D 
coordinates, and as a set of relations that are preserved 
for the image. These relations may be expressed as 
functions that operate on the image. Although these 
functions may return quantitative values, as in the case 
of bond angles or interatomic distances, they are 
represented qualitatively in terms of attributes that are 
true or false. Table 1 illustrates a variety of molecular 
n-ary relations, for n -- 2, 3 etc. Parts of an image may 
be considered at various levels of complexity. In 
applications to molecular structure classification parts 

could be selected, for example, at the atomic, the 
functional group or the secondary structure motif levels. 

IMEM also requires some background knowledge to 
be defined. This includes a set of predefined primitive 
concepts which specify the nondecomposable units used 
to describe images and a definition of all the relevant 
relations which will be used for clustering. 

3.2. Classification and learning in IMEM 

The notions of equivalence, subsumption and simi- 
larity are at the core of the IMEM approach to 
classification and learning. Two images are considered 
equivalent with respect to a set of predefined relations if 
their parts are identically related. More formally, two 
images C and D are equivalent with respect to an n-ary 
relation r if there exists a bijective function f such that 
for all n-tuples cl . . . . .  c, of parts in C 

r(c I . . . . .  c,) if and only if r(f[cl] . . . .  f[c,]). 

That is, for every part c i in image C there exists a 
corresponding (unique) part f (c i )  in image D. If, for 
example, parts c i and cy are bonded in C, then their 
corresponding parts f (c i )  and f (c j )  must also be bonded 
in D. Thus, equivalence with regards to the connectivity 
relation reduces to full-graph isomorphism. Two images 
are equivalent with respect to a set of relations if there 
exists a single function f that preserves equivalence for 
each of the relations in the set. Equivalence of images 
under rigid geometric transformations (e.g. rotation, 
translation) is accomplished by choosing relations 
which do not depend on the particular coordinate 
frame of an image. 

An image C subsumes an image D with respect to a 
set of relations if and only if C is equivalent to a 
subimage of D, i.e. there is an injective functionf from 
C to D that preserves the specified relations. If 
connectivity is the only relation of interest, then 
subsumption reduces to subgraph isomorphism, i.e. C 
is a substructure of D. Subsumption is illustrated in Fig. 
1 and is further discussed below in the context of a 
subsumption hierarchy. 

Finally, similarity between two images can be 
measured by determining the least common subsumers 
of the images. Formally, an image M is a least common 
subsumer of images C and D if and only if M subsumes 
both C and D and there does not exist an image M' such 
that M subsumes M' and M' subsumes C and D. Note 
that two images may have a number of different least 
common subsumers. 

We now define similarity using a variant of the Dice 
association coefficient (Salton & McGill, 1983) 

S(C, D) = 21ml/([CI + IOl), (1) 

where S(C,D)  denotes the similarity between the 
images C and D, M is the least common subsumer of 
C and D with the largest number of parts, and IXl 
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denotes the number of parts in an image X. Once again, 
if connectivity is the only relation considered then the 
similarity function defined in (1) corresponds to the 
definition of similarity based on maximal common 
substructure (Willett, 1990). 

The IMEM algorithm uses an incremental, top-down,. 
divisive approach to build a subsumption hierarchy that 
summarizes and classifies a dataset. This hierarchy is 
represented as a directed graph, where each node is 
labeled by an image: a leaf node corresponds to an 
image of an individual instance of a molecular structure 
and an intermediate node corresponds to an image that 
denotes the class of structures which it subsumes (i.e. 
all leaf node images under it in the hierarchy). Edges in 

the graph denote subsumption. Edges implied by 
transitivity are implicitly represented in the hierarchy. 
Thus, if A subsumes B and B subsumes C, there is no 
need for an edge between A and C. 

The initial state of a subsumption hierarchy consists 
of a single most general image. A new input image D is 
incorporated into the hierarchy by being recursively 
passed down to the children of each image that are 
found to subsume it. This process is followed until an 
equivalent image is found or a level is reached at which 
none of the child images are found to subsume the input 
image. In this manner the most specific subsumers of 
the input image are identified. Links are then made from 
the most specific subsumers to the input image. At this 

05 c4 c s j . _ ~  
~ c ~  

C3 
(il) / \  

05 O5 

~ c2 
03 C3 

04 (i2) 02 (i3) 

(a) Initial subsumption hierarchy 

05 
c ~ c l  

(D) 

(b) Input image 

02 

05 c cl 
w C 2  

05 
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C3 
(il) 
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03 C3 (i3) 
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O2 1 

(D) .O1 C3 (D) ~O~1102 04 (i2) 02 
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(c) Updated subsumption hierarchy (d) Generalization of D and i2 

Fig. !. Development of a subsumption hierarchy for molecular images (see text): (a) initial hierarchy, (b) a new input image D, (c) hierarchy 
after D is added and (d) final hierarchy after inclusion of generalization of D and i2. 
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point, IMEM attempts to generalize the input image 
with each of the other children of the most specific 
subsumers. If a child C is similar enough to the input 
image, i.e. S(C,D) is greater than some predefined 
threshold value, then a least common subsumer M is 
constructed for C and D. M is then classified into the 
current hierarchy: inserted just below all most specific 
subsumers and above all most general subsumers. 

Fig. 1 (a) provides a graphical illustration of an initial 
subsumption hierarchy in which image i l subsumes 
images i2 and i3, i.e. i l is a subgraph of both i2 and i3. 
Assume that IMEM is now given an input image D, as 
depicted in Fig. l(b). Image D is compared with i l, 
which is found to subsume it. It is then passed down to 
the child images i2 and i3, neither of which subsume D. 
Thus, il is the most specific subsumer of D and D is 
entered into the hierarchy as a child of i l ,  as illustrated 
in Fig. 1 (c). Similarity measures are then calculated for 
D and each of the images i2 and i3. Assuming that i2 is 
determined to be similar to D [i.e. S(i2, D ) >  thres- 
hold], then a least common subsumer M is constructed 
and classified into the hierarchy, resulting in the graph 
displayed in Fig. l(d). If the threshold had been set so 
that D was not considered similar to either i2 or i3, then 
the final hierarchy would have remained as illustrated in 
Fig. l(c). 

Thus, the choice of a similarity threshold value for 
this process is important as it determines, to a large 
extent, the shape of the classification tree. The value can 
range between 0 and 1. At the extremes, a value of 1 
produces a maximally broad tree while a value of 0 
yields a maximally deep tree. 

3.3. IMEM applied to the CSD 

In the set of example s presented only a few of the 
qualitative relations of Table 1 will be used by IMEM 
for the CSD datasets. A relation used in all datasets is 
that of atomic connectivity. Letting erad(a) be the 
covalent radius (Cambridge Structural Database, 1994) 
of an atom of typea ,  the bonded relation is defined as 

bonded(x, y)~f[erad(x) + erad(y) - ot <_ d(x, y)] 

A [d(x, y) < erad(x) + erad(y) + o~], 

All of the molecular graphs exhibited by the CSD 
datasets studied in this paper have previously been 
classified manually and/or automatically using numer- 
ical clustering methods. Thus, for each CSD dataset it is 
possible to ask two questions: 'are the archetypal classes 
representable by a small set of disjoint concepts?' (the 
question of representational adequacy) and 'are there 
sufficient numbers of instances of these concepts in the 
data?' (the question of empirical adequacy). 

4. Results 

4.1. Six-membered carbocycles 

A general six-membered carbocycle adopts a small 
number of typical conformations, and conformation 
classes discovered by an unsupervised learning proce- 
dure can be validated against known classes. A dataset 
of 222 six-membered rings, chosen to exhibit a broad 
spectrum of chemical environments and conformations, 
has been retrieved from the CSD and previously 
analyzed using various numerical clustering procedures 
(Allen, Doyle & Taylor, 1991a,b,c). This dataset is 
reanalyzed here using IMEM and compared with the 
Jarvis-Patrick numerical clustering scheme of Allen et 
al. (1991). 

Fig. 2 displays the 2D topology of the six-membered 
ring. For the purposes of numerical clustering, the six 
intraannular torsion angles r 1 . . . . .  r 6 (Fig. 2, Table 2) 
were used. The six attributes r l - r  6 take on different 
values with each application of a 2D symmetry 
permutation and this introduces complications for 
numerical clustering routines which require a metric 
for the computation of dissimilarities between exam- 
ples. Since the six-membered ring has extensive 
permutational symmetry (Fig. 2), the similarity of two 
structures under one permutation may be different from 
their similarity with respect to another permutation. The 
solution presented by Allen, Doyle & Taylor (1991a,b) 
is to fix one conformation, say C in the similarity 
expression (1) above, and use the maximum similarity, 
S(C, D), obtained from all possible permutations of D. 

where d is the interatomic distance (in ,~,). Thus, two 
atoms are bonded if their interatomic distance is less 
than the sum of their atomic radii, plus a constant factor 
ct. Taking the radius of carbon to be 0.68 and setting 
c~ -- 0.4 determines that two carbons are considered to 
be bonded if their interatomic distance is between 
0.68 + 0.68 - 0.4 and 0.68 + 0.68 + 0.4 (0.96-1.76) ,~,. 
Since oxygen is also assigned a covalent radius of 
0.68 ,~, the same range is used for carbon-oxygen and 
oxygen-oxygen bonding. This same definition of atomic 
connectivity in crystal structures is used by the CSD 
software. 

1:5 1:2 

174 ~ 173 

1 2 3 4 5 6  
2 3 4 5 6 1  

3 4 5 6 1 2  
4 5 6 1 2 3  

5 6 1 2 3 4  
6 1 2 3 4 5  
6 5 4 3 2 1  
5 4 3 2 1 6  

4 3 2 1 6  S 
3 2 1 6 5 4  

2 1 6 5 4 3  
1 6 5 4 3 2  

and atomic Fig. 2. Six-membered carbocycle: torsional descriptors 
permutational symmetry group. 
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Table 2. Conformations of six-membered carbocycles: torsional 
Name Torsional description 

and conceptual descriptions 
IMEM conceptual description 

rl r2 r3 r4 rs r6 rl r2 

Phenyl 0 0 0 0 0 0 sp sp 
Chair 60 - 6 0  60 - 6 0  60 - 6 0  + c  - c  
Boat 0 - 6 0  60 0 - 6 0  60 sp - c  
Twist-boat 33 33 - 7 0  33 33 - 7 0  + c  + c  
Sofa 30 0 0 - 3 0  60 - 6 0  + c  sp 
Half-chair  45 - 15 0 - 15 45 - 6 2  + c  sp or - c 
Screw-boat 40 0 - 2 2  0 40 - 6 0  + c  sp 

r3 r4 r5 r6 

sp sp sp sp 
+ c  - c  + c  - c  
+ c  sp - c  + c  
- c  + c  + c  - c  
sp - c  + c  - c  
sp sp or - c + c  - c  

sp or - c  sp + c  - c  

This is termed 'symmetry-modified' clustering. Sym- 
metry is automatically detected and handled by IMEM. 

To represent six-membered rings, cycloheptanes and 
steroid side chains in IMEM, we use the Klyne-Prelog 
relations, which partition the circular torsion angle 
space into four regions (Klyne & Prelog, 1960; see Fig. 
3). The partitioning gives rise to four qualitative spatial 
relations or, equivalently, one functional relation. A 
connected chain of four atoms is planar if their torsion 
angle is in the sp or ap ranges. Klyne & Prelog (1960) 
used a planarity value of 30 ° in their paper, so that sp is 
- 3 0  to +30 °, and ap is 150-210 °. Tests with IMEM 
have shown, however, that the value of 30 ° is not 
equally appropriate for all problems, because it often 
overgeneralizes planarity. Thus, the Klyne-Prelog 
framework has been used to define a family of functional 
relations, each given by a particular choice of a 
planarity parameter y (see Fig. 4). 

Table 2 lists the seven standard canonical 
conformations of a six-membered ring. These were 
derived by energy minimization calculations and are 
taken from Table 1 of Allen & Taylor (1991). The 
rightmost column lists the structural sequence for the 
canonical series of torsion angles: a listing of the 
corresponding Klyne-Prelog relations. When there is 
some ambiguity about the structural sequence, i.e. when 
a canonical angle is close to a boundary, this is noted 
with a disjunction of possibilities. It can be seen that 
IMEM unequivocally represents the four major 
conformation classes of phenyls, chairs, boats and 

-clinal +clinal 

synperiplanar 

antiperiplanar 

Fig. 3. The Klyne-Pre log  (1960) relations which partition torsion 
angle space to generate four qualitative relational attributes. 

twist-boats. That is, no concept for any of these 
archetypes could possibly denote another archetype. 
However, the half-chair concept subsumes the sofa 
concept. These two conformations are actually quite 
close in conformational space (Allen & Taylor, 1991). 
Also, some screw-boats could be interpreted as half- 
chairs, if r 3 is sp. Again, these two conformations are 
close in conformational space, so this occasional 
equivocation is permissable. 

Having considered the question of representational 
adequacy for the six-membered rings, we now turn to 
the question of empirical adequacy. The IMEM method 
was used to cluster 222 six-membered rings, using a 
similarity threshold of t = 1.0 and a planarity value of 
y = 15 °. Ten concepts, covering 219 instances, were 
created. Table 3 presents the discovered concepts. The 
second column shows the structural sequence under a 
permutation from the symmetry group chosen to match 
the standard conformation classes listed in Table 2. The 
third column gives a standard name to the discovered 
concept. These were derived from a comparison with 
the archetypal concepts given in Table 2. The three 
singletons in the IMEM clustering are instances 58 
(BABPIP), 116 (BEWNOG) and 21 (ACCITR10). 

sp(p, q, r, s) ~f  

if bonded (p, q) and bonded (q, r) and bonded (r, s) then 

t (p ,q ,  r ,s)  > 360 - y or t (p ,q ,  r, s) < y 

+c(p, q, r, s) ~f  

if bonded (p, q) and bonded (q, r) and bonded (r, s) then 

F < t ( p , q , r , s )  < 1 8 0 - y  

ap(p, q, r, s) ~f  

if bonded (p, q) and bonded (q, r) and bonded (r, s) then 

t(p, q, r, s) > 180 - F and t(p, q, r, s) < 180 + Y 

- c ( p ,  q, r, s) ~f  

if bonded (p, q) and bonded (q, r) and bonded (r, s) then 

180+ y < t (p ,q ,  r ,s)  < 3 6 0 -  F 

Fig. 4. Concept definitions for the Klyne-Pre log (1960) relations: 
t(p, q, r, s) is the torsion angle. 
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Table 3. Conformations of six-membered carbocycles discovered by IMEM (Id is the IMEM concept number) 
Id Discovered concept Standard name(s) Frequency 

rl r2 l"3 1-4 l'5 1"6 

1 sp sp sp sp sp sp Phenyl 35 
2 sp - c  +c  sp - c  +c  Boat 52 
3 + c  - c  + c  - c  + c  - c  Chair 64 
4 + c  + c  - c  + c  + c  - c  Twist-boat 8 
5 - c  sp sp sp - c  +c  Half-chair 5 
6 - c  +c  sp +c  - c  +c  Half-chair 5 
7 sp - c  +c  +c  - c  +c  Boat-like 12 
8 - c  sp +c  sp - c  + c  Screw boat 6 
9 - c  sp sp +c  - c  + c  Half-chair, sofa 29 

10 + c  - c  + c  - c  - c  + c  Boat-like 3 
11 sp sp - c  +c  sp sp Phenyl-like 1 

Table 4. Comparison of concept discovery results for 
six-membered carbocycles from IMEM and from 
numerical clustering (Allen, Doyle & Taylor, 1991b) 
denoted as ADT (Id is the IMEM or ADT concept 
number, Np is the combined membership of a concept 

class) 
ADT IMEM 

Class Id Np Id Np 

Phenyl 1 35 1 35 
Boat 2 63 2 67 

3 7 
4 10 
5 
6 

Chair 7 59 
8 
9 

Twist-boat 12 9 
Half-chair/sofa/ 10 38 

screw-boat 11 

3 64 

4 8 
5 45 
6 
8 

Instances 58 and 116 are heavily constrained by 
complex bridging of their basic six-membered rings. 
The third singleton, instance 21, has torsion angles 
( 5 ,7 , -18 ,17 , -6 , -6 )  and is very close to the phenyl 
classification. 

Using the same dataset of 222 six-membered 
carbocycles, the Jarvis-Patrick numerical clustering 
method used by Allen, Doyle & Taylor (1991b) created 
14 clusters with membership greater than one, including 
two doublet clusters, and 14 singletons. To compare the 
numerical results with those of IMEM, the 12 numerical 
clusters with membership greater than two (see Table 4) 
were compared with the ten IMEM concepts. A 
comparative analysis of the numerical and IMEM 
clusterings reveals similarities. These can be considered 
for each archetypal concept depicted in Fig. 4(a). 

Phenyl. The numerical and IMEM clustering results 
are identical: the same 35 instances are assigned to the 
phenyl class by both methods. 

Boat. The numerical method uses five concepts to 
describe 63 boats. IMEM uses three concepts to 
describe 67 boats. All of the entries of the five 
numerical clusters appear in the three IMEM concepts, 

except for instance 58 (a singleton in IMEM). The five 
extra instances in the three IMEM boat concepts are 
(IMEM cluster identifier: numerical cluster identifier in 
parentheses) 

instance 83 (BEHFAV): ( -41 ,  78, -15 ,  -60 ,  103, 
-37;  7:12) 

instance 85 (BEHFAV): ( -46 ,  80, -15 ,  -60 ,  99, 
-31;  7:12) 

instance 120 (BEWNOG): (22, 30, -32 ,  -17 ,  60, 
-62;  10:singleton) 

instance 48 (ACONTN10): ( -22 ,  27, 20, -67 ,  73, 
-30;  10:singleton) 

instance 175 (AMHPEN10): ( -16 ,  16, 3, -21 ,  21, 
- 3 ;  2:doublet). 

Chair. The numerical method finds 59 chairs, IMEM 
64. The three numerical chair clusters are completely 
contained within a single IMEM concept. The five extra 
IMEM chairs, all singletons in the numerical analysis, 
are 

instance 20 (ACAMYA): (56, -57 ,  55, -50 ,  49, 
-53)  

instance 34 (ACLYCA10): (55, -63 ,  63, -54 ,  43, 
-44)  

instance 76 (BCYLON10): (65, -70 ,  70, -53 ,  45, 
-56)  

instance 117 (BEWNOG): (66, -92 ,  89, -92 ,  62, 
-44)  

instance 181 (BEWNOG): (28, -22 ,  37, -54 ,  59, 
-47).  

Twist-boat. As mentioned above, the numerical 
method places two IMEM boats (83 and 85) in this 
class. IMEM places instance 78 (BCYLON10) ( -31 ,  
-30 ,  56, -18 ,  -44 ,  71), a singleton in the numerical 
method, in the twist-boat concept. The numerical and 
IMEM clusters are otherwise identical. 

Half-chair~sofa~screw-boat. The two methods differ 
most for these classes. The numerical method discovers 
29 half-chairs and assigns nine instances to a sofa/ 
screw-boat class. IMEM assigns 39 instances to a half- 
chair/sofa class, but also discovers a distinct screw-boat 
concept covering six instances. There are four possible 
IMEM concepts for the half-chair (see Table 2) and only 
two of these occur in the dataset. 
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Name 

Chair 
Twist-chair 
Boat 
Twist-boat 

Table 5. C o n f o r m a t i o n s  o f  s e v e n - m e m b e r e d  r ings:  t o r s i o n a l  a n d  c o n c e p t u a l  d e s c r i p t i o n s  

Torsional description IMEM conceptual description 
r l  l"2 l"3 1"4 1"5 1"6 1"7 1"1 1"2 1"3 l"4 1.5 z'6 l"7 

64 -84 66 0 -66  84 -64  +c - c  +c sp - c  +c - c  
54 -72 88 -39 -39 88 -72 +c -c  +c -c  -c  +c -c  

-58 -31 70 0 -70 31 58 - c  - c  +c sp - c  +c +c 
-64 -18 75 -18 -64 45 45 - c  sp or - c +c sp or - c -c  +c +c 

The proportions of the archetypal conformations in 
the 222 six-membered carbocycles are not representa- 
tive of the whole CSD. To clarify this point, the CSD 
search program Q U E S T 3 D  (Cambridge Structural 
Database, 1994) was used to extract all rings of six 
carbons connected by single bonds, regardless of their 
chemical environment. Only structures with an R 
factor _< 0.10 were considered. This search produced 
16466 examples. Processing this dataset using IMEM 
gave the following results 

chair 11 892 (72.2 %) 
boat 2030 (12.3%) 
twist-boat 503 (3.1%) 
planar 103 (0.6%) 
others 289 (1.9%). 

We note that this simple search definition for a 
six-membered carbocycle does not exclude all 
occurrences of rings containing C s p  2 atoms, i . e .  

those with exocyclic double bonds: the primary 
consideration was to test IMEM with a very large 
dataset of unknown composition. Nevertheless, the 
chair is the energetically preferred conformation of a 

(a) 

(b) 

Fig. 5. Conformational concepts discovered by IMEM: (a) for six- 
membered rings (left to right): phenyl, boat, chair, twist-boat, half- 
chair/sofa and screw-boat; (b) for seven-membered rings: twist- 
chair, chair, twist-boat and half-chair. 

six-membered carbocycle and this is reflected in its 
dominant relative population. 

4.2. C y c l o h e p t a n e  

The cycloheptane dataset (dataset 7C1 of Allen, 
Howard & Pitchford, 1993) was processed by IMEM in 
an analogous manner to the six-membered carbocycles: 
the only difference being the ring size and, hence, the 
order of the permutation symmetry group (see Fig. 6). 
A planarity value of y = 15 ° was also used to represent 
cycloheptane conformations. Table 5 lists the four 
archetypal forms of cycloheptane and shows that the 
twist-boat concept subsumes the boat concept, that is, 
IMEM does not uniquely represent the twist-boat class 
using the Klyne-Prelog relations. Aside from this minor 
equivocation, IMEM can adequately represent the 
major cycloheptane conformations. 

1 2 3 4 5 6 7  
2 3 4 6 6 7 1  
3 4 6 6 7 1 2  
4 6 6 7 1 2 3  

~2 8 7 1 2 3 4 6  
7 1 2 3 4 8 6  
7 6 6 4 3 2 1  

~ ' ~ ,  4 / ~  6 5 4 3 2 1 7  
8 4 3 2 1 7 6  
4 3 2 1 7 6 6  
3 2 1 7 6 8 4  
2 1 7 6 5 4 3  
1 7 6 5 4 3 2  

1 2 3 4 6 6 7 8  1 2 3 4 6 6 7  1 2 3 4 6 6 7  
1 7 6 6 4 3 2 8  1 7 6 5 4 3 2  1 7 6 5 4 3 2  

(ID (V) (VI) 

Fig. 6. Seven-membered rings: torsional descriptors and atomic 
permutational symmetry groups for cycloheptane (I), methylene- 
cycloheptane (II), oxacycloheptane (V) and azacycloheptane (VI), 
from Allen, Howard & Pitchford (1993) for (I) and Allen et al. 
(1994) for (II), (V) and (VI). 
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Table 6. Conformations of seven-membered 
Id 

rings discovered by IMEM (Id is the IMEM concept number) 
Discovered concept 

rl ~2 ~ ~ r5 

1 + c  - c  + c  - c  - c  
2 + c  + c  - c  ~ - c  
3 - c  - c  + c  sp - c  

4 - c  ~ + c  sp - c  

5 - c  - c  + c  - c  - c  

6 - c  ~ sp + c  - c  

7 sp - c  + c  - c  - c  

Standard name(s) Frequency 
r6 r7 

+ c  - c  Twist-chair 56 
+ c - c  Chair 29 
+c  + c  Twist-boat, boat 10 
+ c  sp Boat-like 2 
+c  + c  Boat-like 1 
+ c  + c  Novel 1 
+ c  - c  Twist-chair-like 1 

Allen, Howard & Pitchford (1993) extracted a 
dataset of 101 cycloheptane structures from the 
CSD. They note that there are three main con- 
formational subgroups in this particular dataset: 
chairs, twist-chairs and boat/twist-boats. Jarvis- 
Patrick numerical clustering generated four clusters 
with membership greater than two, two doublet 
clusters and nine singletons. IMEM created five 
concepts and four singleton concepts (Table 6). One 
singleton was subsequently found to have crystal- 
lographic coordinate errors. The other three single- 
tons are instances 100 (HPAPTX) (-31,  50, - 5 ,  0, 
-54 ,  102, -48),  17 (BUHXAD) (-32,  83,-52,  
-36 ,  76, -35 ,  1) and 57 (HYMINA) (-21,  75, 
-22 ,  -64 ,  55, 29, -53).  A visual inspection 
revealed that singleton instance 100, concept 6 in 
Table 6, looks very much like a half-chair due to its 
two contiguous sp relations (see Fig. 5b). As with 
the six-membered carbocycles, the results of IMEM 
can be compared with the numerical results for each 
archetypal class (see Table 7). 

Twist-chairs. IMEM discovers 56 twist-chairs, the 
numerical method generates 48. Of the extra IMEM 
twist-chairs, six appear in doublet clusters or as 
singletons in the numerical study and instances 19 
(CEBBUG) (63, -88 ,  59, 18, -78 ,  85, -62)  and 
32 (DIPHEP10) (67, -85 ,  55, 16, -74 ,  76, -59)  
are numerically classified as chairs. Both these have 
a r 4 torsion angle just slightly into the +c range, 
causing them to fall under the IMEM twist-chair 
concept. 

Chairs. As mentioned above, the numerical method 
classifies two IMEM twist-chairs as chairs. IMEM also 
adds instance 15 (BOLWUU), a member of a numerical 
doublet cluster, to the chair class. 

Boats. The boat clusters from numerical analysis and 
from IMEM are identical. 

Fig. 5(b) depicts the IMEM images for the three 
archetypal concepts discussed above and for the unique 
half-chair instance. 

4.3. Exo-unsaturated and heterocyclic seven-membered 
rings 

In a second study of seven-membered rings, 
Allen, Howard, Pitchford & Vinter (1994) applied 

Table 7. Comparison of concept discovery results for 
seven-membered rings from IMEM and from numerical 
clustering (Allen, Howard & Pitchford, 1993), denoted 
as AHP (Id is the IMEM or AHP concept number, Np is 

the combined membership of a concept class) 
AHP IMEM 

Class Id Np Id Np 
Twist-chair 1 48 1 56 

3 
Chair 2 30 2 29 
Boat/twist-boat 4 10 3 10 

Table 8. Comparison of concept discovery results for 
seven-membered rings (II), (V) and (VI) (Fig. 5)from 
IMEM and from numerical clustering (Allen, Howard, 

Pitchford & Vinter, 1994) denoted as AHPV 
The comparison is in terms of numbers of  rings assigned to each class. 
Class descriptors are those defined by Allen, Howard, Pitchford & 
Vinter ( 1 9 9 4 ) .  

Class AHPV IMEM 
(II) 

TC2 14 15 
TC3 15 15 
CI 12 12 
TC4 8 8 
C2 2 2 

(v) 
TC3 17 17 
TC2 12 16 
C2 8 6 
C3 5 4 

(VI) 
TC3 11 11 
C 1/TC4 6 6 

Jarvis-Patrick numerical clustering to exo-unsaturated 
and heterocyclic systems. Fig. 6 illustrates three of 
these structures which are analyzed here by IMEM. 
Note that their topological symmetry is constrained 
by the presence of an exocyclic atom at C1 (II), or 
a heteroatom at position 1 (V, VI). The archetypal 
classes for these structures are the same as for 
cycloheptane (Table 5), except that there are four 
possible forms of each archetype. These are 
produced by a symmetry element passing through 
one of the pairs of atoms 4-5, 3-4/5-6, 2-3/6-7 or 
1-2/7-1. 
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Table 9. Conformations of steroid C17 side chains: torsional and conceptual descriptions (conformation names are 
from Duax, Griffin, Rohrer & Weeks, 1980) 

Name Torsional description IMEM conceptual description 
r! r 2 r 3 r 4 r 5 r 6 r I r 2 r 3 r 4 r 5 r6 

A 180 180 180 180 180 3-120 ap ap ap ap ap sp or + c  
B 180 180 180 40-70 180 43-85 ap ap ap +c ap +c  
C 180 180 56-85 180 180 - 3 9  to - 6 4  ap ap +c ap ap - c  
D1 180 60-73 180 - 6 7  to - 9 9  180 - 3 9  to - 6 4  ap +c  ap - c  ap - c  

D2 180 60, 86 180 180 180 - 3 ,  - 5 9  ap +c  ap ap ap sp or - c  
D3 180 57, 65 180 61, 64 180 56, 70 ap +c  ap +c ap +c  

Table 10. Conformations of steroid C17 side chains discovered by IMEM (Id is the IMEM concept number) 
Id Discovered concept Standard name Frequency 

rl r2 r3 r4 r5 r6 

1 ap ap ap ap +c ap A 93 
2 ap ap ap ap ap sp A 12 
3 ap ap ap - c  - c  ap B 7 
4 ap ap - c  ap +c ap C 4 
5 ap +c  ap - c  - c  ap D1 3 
6 ap +c ap ap - c  ap D2 8 
7 ap - c  ap ap ap sp D2 2 
8 ap +c  ap +c +c ap D3 4 
9 ap +c  ap ap +c ap D2-1ike 5 

10 ap ap +c ap +c - c  C-like 4 
11 ap ap +c ap ap +c C-like 2 
12 ap ap ap ap +c  - c  A-like 3 

The IMEM method was applied to three datasets: II 
(64 examples), V (50 examples) and VI (26 examples), 
using a planarity value of y = 15 ° . The cluster 
population results from IMEM and from the numerical 
analysis are given in Table 8; the two methods are seen 
to be in very close agreement. 

4.4. Steroid C17 side chain 

The six-membered carbocycle and the cycloheptane 
datasets were chosen to illustrate high topological 
symmetry (orders 12 and 14, respectively) combined 
with the conformational constraints imposed by ring 
cyclicity. The steroid C17 side chain is a structure 
unconstrained by ring cyclicity and it exhibits low-order 
topological symmetry, as shown in Fig. 7. 

4 6 
" ~ l ~  89 

1 
1 2 3 4 6 6 7 8 9  
1 2 3 4 6 6 7 9 8  

Fig. 7. Steroid C17 side chain and atomic permutational symmetry  
group. The C2 atom here corresponds to C 17 in standard steroid 
numbering. 

The Klyne-Prelog relations are also used to represent 
steroid C17 side chain conformations (Table 9). 
However, a planarity value of 7 ' -  15 °, as used for 
the previous two datasets, was found to be inappropri- 
ate. In the steroid side chains many of the 180 ° values in 
the second column of Table 9 fluctuate well outside the 
ap range (165-195°), which is defined by y - - 1 5  °. 
Torsion angles in ring systems are more constrained 
than those in fully flexible acyclic chains, thus it is 
appropriate to allow a wider definition of planarity in 
this case. 

The biological importance of the steroid side chain 
conformation has led to considerable crystallographic 
activity in this area. The conformations of the C 17 side 
chains of Fig. 7 were analyzed manually by Duax, 
Griffin, Rohrer & Weeks (1980), who generated the set 
of archetypal classes reproduced in Table 9. The 
corresponding IMEM concepts, using a planarity 
value of F = 30°, are in the rightmost column of the 
table. In contrast to the previous two cyclic datasets, 
there is no equivocation of canonical forms for the C 17 
side chains: each class has a unique description. 
Processing a dataset of 151 C17 side chain examples 
with IMEM yielded 12 concepts with two or more 
instances and four singletons (see Table 10). All of the 
singletons were subsequently identified as having 
slightly abnormal geometry due to high thermal motion 
and/or unresolved disorder. Small adjustments to the 
standard covalent radius of carbon had been made in the 
CSD to generate correct connections in these few 
special cases. Inadvertently, these adjusted radii were 
not passed to IMEM, hence this program was unable to 
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Table 11. Comparison of concept discovery results for 
steroid C17 side chains from IMEM and from numerical 
clustering (Allen, Bath & Willett, 1995), denoted as 
ABW (ld is the IMEM or ABW concept number, Np is 

the combined class membership) 
ABW IMEM 

Class Id Np Id Np 

A 1 112 1 105 
2 

B 7 6 3 7 
C 9 5 4 4 
DI 2 3 5 3 
D2 6 7 6 10 

7 
D3 3 4 8 4 

assess bondedness correctly. These four individuals are 
omitted from Table 10. Given that r 5 and r 6 can be 
interchanged due to the topological symmetry of the 
fragment, then IMEM concepts 1-8 correspond to the 
archetypal classes (Table 9) identified by Duax, Griffin, 
Rohrer & Weeks (1980). Concepts 9-12, covering 14 
instances, are minor variations on these major classes, 
as indicated in Table 10. 

Allen, Doyle & Taylor (1991c) processed a set of 101 
examples of steroid side chains using single-linkage and 
Jarvis-Patrick clustering algorithms. They considered 
both chiral and achiral clustering, where the latter 
regards enantiomorphs as equivalent. Allen, Bath & 
Willett (1995) repeated the achiral experiment (which is 
formally equivalent to the IMEM procedure) using the 
augmented set of 151 examples that were used in the 
IMEM experiment above. The numerical single-linkage 
clustering algorithm was used and, since this is linked 
directly to the CSD master files, connectivities were 
correct for all 151 examples. The numerical clustering 
generated ten clusters with two or more instances jand 
covering 148 of the 15i examples; there were three 
singleton clusters. The numerical and IMEM results are 
compared in Table 11 and minor differences are 
detailed below for each archetypal concept: 

Class A. The numerical method assigns 112 instances 
to the A class, IMEM 105. Of the seven extra numerical 
instances, one is an IMEM singleton, three others 
(instances 23, 28 and 92) are assigned by IMEM to the 
D2 class, since r 2 is well out of the ap range at -110.9, 
-120.2 and -99 .9  °, and one (116) is assigned to the B 
concept, since r 4 is out of the ap range at 122.0 °. The 
remaining two instances appear in IMEM concept 12. 

Class B. The B clusters are identical, except that 
IMEM adds instance 116, as noted above: 

Class C. The C clusters are indetical, except that the 
numerical method incorporates an IMEM singleton. 

Class D1. The clusters are identical. 
Class D2. As noted above, IMEM assigns instances 

23, 28 and 92 to the D2 class. Otherwise, the clusters 
are identical. 

Class D3. The clusters are identical. 

4.5. Hexopyranose sugars 

The previous examples have illustrated applications 
of IMEM to the conformational clustering of 3D 
molecular graphs and, in each case, the effects of 
topological permutational symmetry was an additional 
complexity. By contrast, the hexopyranose sugars, 
which have the hydrogen-depleted 2D graph of Fig. 8, 
are topologically asymmetric by virtue of the exocyclic 
C6 atom. Further, a classification of the set of 3D 
graphs that correspond to the 2D representation of Fig. 
8 involves dividing this 3D graph set into configura- 
tional rather than conformational classes (Allen & 
Fortier, 1993). Thus, each ring C atom is stereogenic, 
yielding 25-- 32 possible stereoisomers. However, 
although we may assume a priori that the hexopyranose 
ring adopts a chair conformation, the ring can exist in a 
+ or - form (~C4 or 4C~, depicted in Allen & Fortier, 
1993). The inversion of the ring does not alter the local 
(R,S) chirality at any of the C atoms so that the set of 3D 
graphs can contain up to 64 conformational/configura- 
tional subclasses. 

In this experiment, the Klyne-Prelog relations 
(sp, +c etc.) are not used. Instead, a binary relation of 
nonbonded contact or proximity is used; this relation 
computes whether or not two atoms are within a van der 
Waals contact distance of each other. Letting vrad(a) be 
the van der Waals radius of an atom of type a, the 
proximal relation is defined as 

y) = [not bonded(x, y)] A [d(x, y) proximal(x, def 

< vrad(x) + vrad(y) + fl], 

that is, two atoms are proximal: (a) if they are not 
bonded and (b) if their interatomic distance is less than 
the sum of their van der Waals radii plus a constant 
factor /3. A family of proximity relations arises by 
varying/3. Taking the van der Waals radii of carbon and 
oxygen to be 1.70 and 1.52 A, the upper bounds of some 
proximity relations are shown in Table 12(a). A value 
of fl = 0.07 is used for the experiments reported here 

Ol 

02 

03 

Fig. 8. Atomic nomenclature for hexopyranose sugars. 
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Table 12. Hexopyranose sugars: (a) upper-bound 
distances for proximity between different pairs of 
atoms for different values of ~ and (b) the five unique 

proximity values at fl = 0.07 
(a) 

(b) 

Atom Atom f l = 0 . 0 0  /5=0.05  f l = 0 . 0 7  /~=0.10  

C O 3.22 3.27 3.29 3.32 
C C 3.40 3.45 3.47 3.50 
O O 3.04 3.09 3.11 3.14 

O1 02  03 04  C6 
05  31 32 
C1 33 34 
C3 3 s 

so, for example, a carbon and an oxygen are proxima! if 
their interatomic distance is between 1.76 and 3.29 A. 

A dataset of 249 hexopyranose structures, described 
by Allen & Fortier (1993), was processed using IMEM. 
A similarity threshold of t = 0 . 7 5  was used to 
encourage the formation of a multilayer concept 
taxonomy, that is, concepts with fewer parts than the 
training examples. IMEM only searched for connected 
images, where every atom has a transitive path to every 
other atom via the bonded relation. The concept 
taxonomy of Fig. 9 was created from 249 examples. 
When all immediate successors of a concept are 
individuals, these are not displayed in the taxonomy. 
The taxonomy clearly shows 14 concepts (at the leaves) 
present in the dataset. Comparing these concepts with 
manual labelings of the 249 examples revealed that 
IMEM exactly reproduced the standard chemical 
classification of the pyranose sugars. The classification 
was achieved using the simple and intuitive relation of 
proximity. Note that the subsumption hierarchy (Fig. 9) 
is not strictly a tree: instances (e.g. COKBIN_88) may 
be subsumed by more than one parent class. 

The numbers in parentheses for each concept of Fig. 
9 are the numbers of parts in the image. The two 
concepts uniq-31 and uniq-8 both have eight parts: the 

Table 13. Hexopyranose configurational classes dis- 
covered by IMEM (ld is the IMEM concept number) 

Id Discovered concept Standard name Frequency 
31 32 33 34 35 

uniq-1 0 0 0 0 0 E-D-Glucose 104 
uniq- 19 0 0 0 0 1 U-D-Glucose 73 
uniq-16 0 1 0 0 0 /~-o-Galactose 25 
uniq-7 0 1 0 0 1 ot-o-Galactose 19 
uniq-10 1 0 0 0 1 a-D-Mannose 8 
uniq- 14 1 1 0 0 1 ot-o-Talose 3 
uniq- 17 0 0 1 0 1 C~-D-Allose 2 
uniq-22 0 1 1 0 0 fl-o-Gulose 3 
BIKWOH10* 0 0 0 1 0 Ot-L-Idose 1 
uniq-26 1 0 0 0 0 fl-D-Mannose 3 
COKBIN* 0 0 1 0 0 fl-D-Allose 1 
uniq-34 0 1 1 0 1 a-D-Gulose 2 
uniq-33 l 0 1 0 1 Ot-D-Altrose 3 
PAIDOP* 1 1 1 0 1 a-D-Idose 1 

central pyran ring and substituents 03 and C6. In 
uniq-31 C 1 and 03 are proximal and in uniq-8 C 1 and 
03 are not proximal. The atoms C1 and C6 are 
proximal in the individual BIKWOH10 and not in 
uniq-31 or uniq-8 (therefore, all other 248 examples), 
so it is not subsumed by either of these concepts. 

After clustering, the 14 discovered concepts were 
inspected to see which proximity values were invariant. 
It was found that only seven interatomic proximity 
values varied across the discovered concepts. These are 
the proximity relations between 0 5 - - 0 2 ,  0 5 - - 0 4 ,  
C1- -O3,  C1- -C6 ,  C - - O 4 ,  C3--O1 and C4- -O2.  
Among the instances of any particular discovered 
concept, all other proximity values are equivalent. 
Furthermore, the 0 5 - - 0 2  and C4- -O2 ,  and 0 5 - - 0 4  
and C 2 - - O 4  proximities were found to be functionally 
equivalent. Thus, a total of five interatomic proximity 
values, listed in Table 12(b), might be used to cluster 
the 249 pyranose sugars. For example, referring to 
Table 12(b), 33 is the attribute for the proximity value 
between C1 and 03. Table 13 uses these attributes to 

l oo,q -23,9) I I °o,q.3,,)I 

/ \  /\ 
I l°°'q"'"') II°°'~"'"°))I °n'~"" °) ]I oo,q-,.o)I 

")II ~-'I,,) l l ~°'q"'(")I [ o"'~'(") I 

Fig. 9. The hexopyranose concept 
hierarchy for 249 instances. Indi- 
vidual (singleton) concepts are in 
diamonds. The numbers in par- 
entheses for each concept are the 
numbers of parts in the image. 
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give a compact structural sequence description to each 
concept. A '1 '  is an abbreviation for true, '0 '  for false. 

The attributes of Table 12(b) can be correlated 
with the standard D, L and a,/3 attributes for the 
pyranose sugars. It can be seen from Table 13 that 
BIKWOH10, the only L-form sugar in the dataset, is 
also the only one where C1 and C6 are proximal 
(attribute 84). This is perfectly reasonable, consider- 
ing that the configuration at the stereocenter C5 
determines the D or L designation for a sugar and 
that C6 is the substituent of C5. Thus, the attribute 
8 4 determines the D or L designation. The config- 
uration at the stereocenter C1 determines the ot or 13 
designation and it appears that one attribute, 85 , can 
distinguish between a and /j forms (see, for 
example, uniq-1 and uniq-19). The three remaining 
attributes, 8~, 82 and 83, can be used to designate 
the eight major sugar classes (glucose, galactose, 
mannose etc.). The five qualitative attributes will 
give rise to a total of 32 (25) concepts. 

An analysis was performed to determine the 
sensitivity of the clustering to the van der Waals 
proximity parameter ft. It was found that values of 
/j in the range 0.06-0.09 produced perfect cluster- 
ings. Below this range, at /3 =0 .05 ,  instance 121 
(refcode FITKAU) becomes a singleton concept. An 
inspection of this structure revealed that it has an 
0 2 - - 0 3  distance of 3.09A, sufficient to indicate 
proximity only at higher /J values (see Table 12a). 
In all other /j-o-glucose instances, 02  and 03 are 
proximal. At /j = 0.0, the same taxonomy as for 
/ 3 -  0.05 is produced, with the exception that two 
extra concepts are fomed. One is an ot-D-galactose 
split (two instances), the other is a /j-D-glucose split 
(three instances). Above the 0.06-0.09 range, at 
/3--0.1,  instance 70 (refcode CELGIJ) becomes a 
singleton concept, since O1 and C4 are then 
proximal, with a distance of 3.32A (see Table 
12a). The O1 and C4 atoms are not proximal in any 
other a-D-glucose instances. Thus, all values of 13 in 
the range 0.00-0.10 produce reasonable clusterings 
of the hexopyranose dataset. As /3 increases past this 
range, clustering quality slowly but progressively 
deteriorates. 

Allen & Fortier (1993) cluster the data into the 
same categories as those of Table 13. As numerical 
descriptors, they used six intraannular (e.g. 0 5 - -  
C 1 - - C 2 - - C 3 )  and five improper (e.g. O 5 - - C 1 - -  
O1--C2)  torsion angles. Chemical expertise was 
necessary to determine these quantitative parameters 
from the many possible available descriptors. In 
fact, only the five improper torsion angles (projected 
valence angles) were necessary to determine 
configuration and these are related to the standard 
R and S descriptors of stereochemistry. To test 
this hypothesis using IMEM, two relations were 
defined as 

R(p, q, r,s) a---efif bonded (p,q) and bonded (p, r) 

and bonded (p, s) then t(p, q, r, s) > 0 

def. S(p, q, r,s) -- If bonded (p,q) and bonded (p, r) 

and bonded (p,s) then t(p,q, r,s) < O. 

These 4-ary relations are similar to the 5-ary R and S 
relations of stereochemistry, with the only difference 
being that a substituent hydrogen is assumed present. 
They are also very similar to the Klyne-Prelog 
relations, except that they are not defined among chains 
of atoms. Rather, they are defined between three atoms 
and a substituent, as in the improper torsion angles used 
by Allen & Fortier (1993), e.g. C 5 - - C 4 m O 4 - - C 3  in 
Fig. 8. These R and S relations also led to perfect 
partitionings of the hexopyranose dataset. Two experi- 
ments were performed: a chiral and an achiral 
clustering. In the chiral approach IMEM created 16 
rather than 14 concepts. The two extra concepts 
represented enantiomorphs of /J-D-glucose (nine 
instances) and u-D-glucose (one instance). These ten 
instances were previously identified by Allen & Fortier 
(1993) as examples where the coordinates in the 
published papers had been accidentally inverted. 
These enantiomorphs were not discovered using the 
proximal relation, as proximity is invariant under 
mirror inversion. In the achiral approach 13 rather 
than 14 concepts were discovered, with the D and L 
forms of the a-idose sugars merged into a single 
concept. 

5. Discussion 

This paper has described the application of the IMEM 
structured concept discovery approach to several 
datasets drawn from the CSD. These were chosen to 
illustrate different points: the conformational clustering 
of cyclic structures (datasets 1 and 2), extended chain 
structures (dataset 3) and structures whose 3D shapes 
are determined by stereochemistry (dataset 4). In each 
case the discovered concepts were compared with 
published results from numerical clustering techniques 
and also with accepted chemical classifications. For all 
datasets, the concepts discovered by IMEM are 
chemically sensible and this has been illustrated by a 
rigorous comparison with archetypal conformation 
classes. For the hexopyranose dataset, a technique for 
stereochemical partitioning not based directly on 
standard stereochemical descriptors proved to be 
effective. All discoveries were made using simple and 
chemically intuitive relations, such as Klyne-Prelog 
torsion angle partitioning, van der Waals proximity and 
relations that mimic R,S stereochemical descriptors. 

The IMEM approach has discovered concepts which 
correspond to actual low-energy conformers. Similar to 
the numerical clustering approach of Allen, Doyle & 
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Taylor (1991b), this was carried out with no a priori 
knowledge of the potential energy surface. The success 
of both approaches reflects and depends upon an ability 
to adequately represent and relate conformation classes. 
While the conceptual approach uses qualitative relations 
and logical subsumption, the numerical approach uses 
quantitative numerical features and distance metrics. 
Both techniques will have difficulties if conformations 
are not adequately represented in a training set or if 
there are no apparent populated peaks in conformation 
space for the molecule in question. However, in the 
latter case, IMEM may still be able to identify similar 
3D substructures in examples. In addition, both 
techniques will often be able to express 3D arrange- 
ments which do not correspond to true conformation 
classes, e.g. rare conformers or instances that occur 
along an interconversion pathway between highly 
populated low-energy conformations. Further, discov- 
ered concepts could be used as starting points for 
computational energy minimizations, perhaps removing 
the need for searches over the complete conformational 
space (Shah & Dolata, 1993). In any case, discovered 
concepts could be used as templates or conformational 
units for structure generation and for small-molecule 
model building. 

The IMEM approach has addressed a central problem 
that exists in the conformational clustering scheme of 
Allen, Doyle & Taylor (1991b), in that it removes the 
need for substantial user intervention during the 
discovery process. IMEM was not guided by a priori 
chemical knowledge of the number and form of the 
classes to expect in a dataset. Also, it appears that less a 
posteriori processing of the clustering results is 
necessary to extract meaningful classes. The numerical 
clustering method creates many singletons and doublet 
clusters and these are excluded from subsequent 
analyses using expert intuition and not by an autono- 
mous process. 

The IMEM approach does not, however, completely 
remove the need for user intervention in the clustering 
process. Indeed, as with any clustering program, the 
results of IMEM should be closely scrutinized. If a poor 
clustering is being presented, e.g. on the basis of 
chemical sensibility, then this is an indication that the 
relations used to express IMEM concepts should be 
modified. IMEM is as much a statement about knowl- 
edge representation as it is about learning. When the 
right representation (i.e. the correct relations) is used, 
the learning task becomes simplified and an appropriate 
clustering tends to appear immediately from IMEM. 
For this reason, we have started to explore automated 
methods for detecting the best relations for expressing 
IMEM concepts in a given problem domain (Conklin, 
1995; Guo & Fortier, 1995). However, we feel that this 
paper does provide some empirical evidence that a small 
library of parameterized relations may be sufficient to 
describe the conformations of many cyclic and extended 

chain systems. Further experiments in knowledge 
discovery, particularly for systems that have not already 
been addressed by other methods, will be needed to 
fully substantiate this claim. 

The clustering method of Allen, Doyle & Taylor 
(1991b) is best suited to the task of conformational 
clustering where all examples have the same constitu- 
tion and are described by the same number of 
quantitative features. Although not illustrated in this 
paper, IMEM is in theory capable of more general 
discovery tasks, where recurrent patterns among 
disparate molecular graphs can be sought. This is part 
of the pharmacophore discovery task: identifying the 
common structural features in drugs of known and 
related activity (Golender & Rozenblit, 1983). Provided 
that pharmacophores of interest could be represented 
adequately by qualitative concepts, the IMEM struc- 
tured concept discovery method could be applied. 

IMEM provides a hierarchical approach to image 
classification. The subsumption hierarchy constructed 
by IMEM generally contains intermediate concept 
nodes as well as the final clusters of images. These 
intermediate levels provide for more efficient classifica- 
tion and retrieval techniques. Also they provide added 
insight into how conceptual clusters are related. For 
example, in the subsumption hierarchy depicted in Fig. 
1 (d) we can see that images D and i2 are related in terms 
of their most common subsumer M, which is a subimage 
for which one atom and bond have been deleted in each 
of the subsumed images. 

Finally, although it cannot yet be claimed that IMEM 
applies equally well to all conformational clustering 
tasks, this paper has successfully considered a variety of 
molecular graphs illustrating different aspects of 
molecular shape. There are certainly many other graphs 
for which knowledge of conformational preferences 
remain buried within the entries of the Cambridge 
Structural Database, for example, higher-order and 
fused ring systems, hydrogen-bonded motifs, amino 
acids rotamers etc. Molecular database mining tools 
such as IMEM should have a role to play in uncovering 
these concepts. 
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